Références
Adaricheva, K. V., et Nation, J. B. (2017). Discovery of the D-Basis in Binary Tables Based on Hypergraph Dualization. Theoretical Computer Science, 658, 307-315. https://doi.org/10.1016/j.tcs.2015.11.031
Ardila, F., Owen, M., et Sullivant, S. (2012). Geodesics in CAT(0) Cubical Complexes. Advances in Applied Mathematics, 48(1), 142-163. https://doi.org/10.1016/j.aam.2011.06.004
Babin, M. A., et Kuznetsov, S. O. (2013). Computing Premises of a Minimal Cover of Functional Depen- dencies Is Intractable. Discrete Applied Mathematics, 161(6), 742-749. https://doi.org/10.1016/j. dam.2012.10.026
Babin, M. A., et Kuznetsov, S. O. (2017). Dualization in Lattices given by Ordered Sets of Irreducibles. Theoretical Computer Science, 658, 316-326. https://doi.org/10.1016/j.tcs.2016.01.005
Barthélemy, J.-P., et Constantin, J. (1993). Median Graphs, Parallelism and Posets. Discrete Mathematics, 111(1-3), 49-63. https://doi.org/10.1016/0012-365X(93)90140-O
Beaudou, L., Mary, A., et Nourine, L. (2017). Algorithms for K-Meet-Semidistributive Lattices. Theoretical Computer Science, 658, 391-398. https://doi.org/10.1016/j.tcs.2015.10.029
Bertet, K., et Caspard, N. (2002). Doubling Convex Sets in Lattices : Characterizations and Recognition Algorithms. Order-a Journal On The Theory of Ordered Sets and Its Applications, 19(2), 181-207. https://doi.org/10.1023/A:1016524118566
Bertet, K., Demko, C., Viaud, J.-F., et Guérin, C. (2018). Lattices, Closures Systems and Implication Bases : A Survey of Structural Aspects and Algorithms. Theoretical Computer Science, 743, 93-109. https://doi.org/10.1016/j.tcs.2016.11.021
Birkhoff, G. (1937). Rings of Sets. Duke Mathematical Journal, 3(3), 443-454.
Birkhoff, G. (1940). Lattice Theory (vol. 25). American Mathematical Soc.
Bordat, J.-P. (1986). Calcul Pratique Du Treillis de Galois d’une Correspondance. Mathématiques et sciences humaines, 96, 31-47.
Chepoi, V. (2012). Nice Labeling Problem for Event Structures : A Counterexample. SIAM Journal on Computing, 41(4), 715-727. https://doi.org/10.1137/110837760
Davey, B. A., Poguntke, W., et Rival, I. (1975). A Characterization of Semi-Distributivity. Algebra Universalis, 5(1), 72-75.
Defrain, O., et Nourine, L. (2020). Dualization in lattices given by implicational bases. Theoretical Computer Science, 814, 169-176. https://doi.org/10.1016/j.tcs.2020.01.028
Defrain, O., Nourine, L., et Vilmin, S. (2021). Translating between the Representations of a Ranked Convex Geometry. Discrete Mathematics, 344(7), 112399. https://doi.org/10.1016/j.disc.2021.112399
Demetrovics, J., Libkin, L., et Muchnik, I. B. (1992). Functional Dependencies in Relational Databases : A Lattice Point of View. Discrete Applied Mathematics, 40(2), 155-185. https://doi.org/10.1016/0166- 218X(92)90028-9
Demko, C., Bertet, K., Faucher, C., Viaud, J.-F., et Kuznetsov, S. O. (2020). NextPriorityConcept : A New and Generic Algorithm Computing Concepts from Complex and Heterogeneous Data. Theoretical Computer Science, 845, 1-20. https://doi.org/10.1016/j.tcs.2020.08.026
Dietrich, B. L. (1987). A Circuit Set Characterization of Antimatroids. Journal of Combinatorial Theory, Series B, 43(3), 314-321. https://doi.org/10.1016/0095-8956(87)90007-4
Doignon, J.-P., et Falmagne, J.-C. (1985). Spaces for the Assessment of Knowledge. International Journal of Man-Machine Studies, 23(2), 175-196. https://doi.org/10.1016/S0020-7373(85)80031-6
Doignon, J.-P., et Falmagne, J.-C. (2012). Knowledge Spaces. Springer Science & Business Media.
Dung, P. M. (1995). On the Acceptability of Arguments and Its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games. Artificial Intelligence, 77(2), 321-357. https://doi.org/10.1016/0004-3702(94)00041-X
Dunne, P. E., Dvořák, W., Linsbichler, T., et Woltran, S. (2015). Characteristics of Multiple Viewpoints in Abstract Argumentation. Artificial Intelligence, 228, 153-178. https://doi.org/10.1016/j.artint.2015. 07.006
Edelman, P. H., et Jamison, R. E. (1985). The Theory of Convex Geometries. Geometriae Dedicata, 19(3), 247-270.
Eiter, T., et Gottlob, G. (1995). Identifying the Minimal Transversals of a Hypergraph and Related Problems. SIAM Journal on Computing, 24(6), 1278-1304. https://doi.org/10.1137/S0097539793250299
Eiter, T., Makino, K., et Gottlob, G. (2008). Computational Aspects of Monotone Dualization : A Brief Survey. Discrete Applied Mathematics, 156(11), 2035-2049. https://doi.org/10.1016/j.dam.2007.04. 017
Falmagne, J.-C., et Doignon, J.-P. (2010). Learning Spaces : Interdisciplinary Applied Mathematics. Springer Science & Business Media.
Farber, M., et Jamison, R. E. (1986). Convexity in Graphs and Hypergraphs. SIAM Journal on Algebraic Discrete Methods, 7(3), 433-444. https://doi.org/10.1137/0607049
Fredman, M. L., et Khachiyan, L. (1996). On the Complexity of Dualization of Monotone Disjunctive Normal Forms. Journal of Algorithms, 21(3), 618-628.
Ganter, B., et Wille, R. (2012). Formal Concept Analysis : Mathematical Foundations. Springer Science & Business Media.
Habib, M., et Nourine, L. (2018). Representation of Lattices via Set-Colored Posets. Discrete Applied Mathematics, 249, 64-73. https://doi.org/10.1016/j.dam.2018.03.068
Hirai, H., et Nakashima, S. (2020). A Compact Representation for Modular Semilattices and Its Applications. Order-a Journal On The Theory of Ordered Sets and Its Applications, 37(3), 479-507. https://doi.org/10.1007/s11083-019-09516-0
Hirai, H., et Oki, T. (2018). A Compact Representation for Minimizers of K-Submodular Functions. Journal of Combinatorial Optimization, 36(3), 709-741. https://doi.org/10.1007/s10878-017-0142-0
Kashiwabara, K., et Nakamura, M. (2010). Characterizations of the Convex Geometries Arising from the Double Shellings of Posets. Discrete Mathematics, 310(15-16), 2100-2112. https://doi.org/10.1016/j.disc.2010.03.031
Kautz, H. A., Kearns, M. J., et Selman, B. (1993). Reasoning with Characteristic Models. AAAI, 93, 34-39.
Kavvadias, D. J., Sideri, M., et Stavropoulos, E. C. (2000). Generating All Maximal Models of a Boolean Expression. Information Processing Letters, 74(3-4), 157-162. https://doi.org/10.1016/S0020-0190(00)00023-5
Khardon, R. (1995). Translating between Horn Representations and Their Characteristic Models. Journal of Artificial Intelligence Research, 3, 349-372. https://doi.org/10.1613/jair.183
Korte, B., Lovász, L., et Schrader, R. (2012). Greedoids (vol. 4). Springer Science & Business Media.
Koshevoy, G. A. (1999). Choice Functions and Abstract Convex Geometries. Mathematical Social Sciences, 38(1), 35-44. https://doi.org/10.1016/S0165-4896(98)00044-4
Kuznetsov, S. O. (1996). Mathematical Aspects of Concept Analysis. Journal of Mathematical Sciences, 80(2), 1654-1698. https://doi.org/10.1007/BF02362847
Kuznetsov, S. O. (2004). On the Intractability of Computing the Duquenne-Guigues Base. Journal of Universal Computer Science, 10(8), 927-933.
Kuznetsov, S. O., et Obiedkov, S. A. (2002). Comparing Performance of Algorithms for Generating Concept Lattices. Journal of Experimental & Theoretical Artificial Intelligence, 14(2-3), 189-216. https://doi.org/10.1080/09528130210164170
Lucchesi, C. L., et Osborn, S. L. (1978). Candidate Keys for Relations. Journal of Computer and System Sciences, 17(2), 270-279. https://doi.org/10.1016/0022-0000(78)90009-0
Mannila, H., et Räihä, K.-J. (1992). The Design of Relational Databases. Addison-Wesley Longman Publishing Co., Inc.
Mannila, H., et Räihä, K.-J. (1994). Algorithms for Inferring Functional Dependencies from Relations. Data & Knowledge Engineering, 12(1), 83-99. https://doi.org/10.1016/0169-023X(94)90023-X
Markowsky, G. (1992). Primes, Irreducibles and Extremal Lattices. Order-a Journal On The Theory of Ordered Sets and Its Applications, 9(3), 265-290.
Mignosi, F., Restivo, A., et Sciortino, M. (2002). Words and Forbidden Factors. Theoretical Computer Science, 273(1-2), 99-117. https://doi.org/10.1016/S0304-3975(00)00436-9
Monjardet, B., et Raderanirina, V. (2001). The Duality between the Anti-Exchange Closure Operators and the Path Independent Choice Operators on a Finite Set. Mathematical Social Sciences, 41(2), 131-150. https://doi.org/10.1016/S0165-4896(00)00061-5
Moore, E. H. (1909). On a Form of General Analysis with Applications to Linear Differential and Integral Equations. Tipografia della R. Accademia dei Lincei, proprietà del cav. V. Salviucci.
Nation, J. B. (2000). Unbounded Semidistributive Lattices. Algebra and Logic, 39(1), 50-53. https://doi. org/10.1007/BF02681568
Nielsen, M., Plotkin, G., et Winskel, G. (1981). Petri Nets, Event Structures and Domains, Part I. Theoretical Computer Science, 13(1), 85-108. https://doi.org/10.1016/0304-3975(81)90112-2
Nourine, L., et Raynaud, O. (1999). A Fast Algorithm for Building Lattices. Information Processing Letters, 71(5-6), 199-204. https://doi.org/10.1016/S0020-0190(99)00108-8
Nourine, L., et Vilmin, S. (2020a). Dihypergraph Decomposition : Application to Closure System Representations. Eighth International Workshop “What Can FCA Do for Artificial Intelligence?”(FCA4AI at ECAI 2020), 31.
Nourine, L., et Vilmin, S. (2020b). Hierarchical Decompositions of Dihypergraphs. 21st Italian Conference on Theoretical Computer Science (ICTCS 2021). https://doi.org/10.48550/arXiv.2006.11831
Nourine, L., et Vilmin, S. (2021). Enumerating Maximal Consistent Closed Sets in Closure Systems. International Conference on Formal Concept Analysis, 57-73. https://doi.org/10.1007/978-3-030- 77867-5_4
Nourine, L., et Vilmin, S. (2022). The enumeration of meet-irreducible elements based on hierarchical decompositions of implicational bases. arXiv preprint arXiv :2202.05536. https://doi.org/10.48550/ arXiv.2202.05536
Schäffter, M. W. (1997). Scheduling with Forbidden Sets. Discrete Applied Mathematics, 72(1-2), 155-166. https://doi.org/10.1016/S0166-218X(96)00042-X
Stern, M. (1999). Semimodular Lattices : Theory and Applications (vol. 73). Cambridge University Press.
Stork, F., et Uetz, M. (2005). On the Generation of Circuits and Minimal Forbidden Sets. Mathematical Programming, 102(1), 185-203. https://doi.org/10.1007/s10107-004-0512-0
Wild, M. (1995). Computations with Finite Closure Systems and Implications. International Computing and Combinatorics Conference, 111-120. https://doi.org/10.1007/BFb0030825
Wild, M. (2017). The Joy of Implications, Aka Pure Horn Formulas : Mainly a Survey. Theoretical Computer Science, 658, 264-292. https://doi.org/10.1016/j.tcs.2016.03.018
Zanuttini, B. (2015). Sur Des Propriétés Structurelles Des Formules de Horn. 9es Journées d’Intelligence Artificielle Fondamentale (IAF 2015).